210 research outputs found

    Danger control programs cause tissue injury and remodeling.

    Get PDF
    Are there common pathways underlying the broad spectrum of tissue pathologies that develop upon injuries and from subsequent tissue remodeling? Here, we explain the pathophysiological impact of a set of evolutionary conserved danger control programs for tissue pathology. These programs date back to the survival benefits of the first multicellular organisms upon traumatic injuries by launching a series of danger control responses, i.e., 1. Haemostasis, or clotting to control bleeding; 2. Host defense, to control pathogen entry and spreading; 3. Re-epithelialisation, to recover barrier functions; and 4. Mesenchymal, to repair to regain tissue stability. Taking kidney pathology as an example, we discuss how clotting, inflammation, epithelial healing, and fibrosis/sclerosis determine the spectrum of kidney pathology, especially when they are insufficiently activated or present in an overshooting and deregulated manner. Understanding the evolutionary benefits of these response programs may refine the search for novel therapeutic targets to limit organ dysfunction in acute injuries and in progressive chronic tissue remodeling

    Danger control programs cause tissue injury and remodeling.

    Get PDF
    Are there common pathways underlying the broad spectrum of tissue pathologies that develop upon injuries and from subsequent tissue remodeling? Here, we explain the pathophysiological impact of a set of evolutionary conserved danger control programs for tissue pathology. These programs date back to the survival benefits of the first multicellular organisms upon traumatic injuries by launching a series of danger control responses, i.e., 1. Haemostasis, or clotting to control bleeding; 2. Host defense, to control pathogen entry and spreading; 3. Re-epithelialisation, to recover barrier functions; and 4. Mesenchymal, to repair to regain tissue stability. Taking kidney pathology as an example, we discuss how clotting, inflammation, epithelial healing, and fibrosis/sclerosis determine the spectrum of kidney pathology, especially when they are insufficiently activated or present in an overshooting and deregulated manner. Understanding the evolutionary benefits of these response programs may refine the search for novel therapeutic targets to limit organ dysfunction in acute injuries and in progressive chronic tissue remodeling

    Tissue Sodium Content and Arterial Hypertension in Obese Adolescents

    Get PDF
    Early-onset obesity is known to culminate in type 2 diabetes, arterial hypertension and subsequent cardiovascular disease. The role of sodium (Na+) homeostasis in this process is incompletely understood, yet correlations between Na+ accumulation and hypertension have been observed in adults. We aimed to investigate these associations in adolescents. A cohort of 32 adolescents (13-17 years), comprising 20 obese patients, of whom 11 were hypertensive, as well as 12 age-matched controls, underwent 23Na-MRI of the left lower leg with a standard clinical 3T scanner. Median triceps surae muscle Na+ content in hypertensive obese (11.95 mmol/L [interquartile range 11.62-13.66]) was significantly lower than in normotensive obese (13.63 mmol/L [12.97-17.64]; p = 0.043) or controls (15.37 mmol/L [14.12-16.08]; p = 0.012). No significant differences were found between normotensive obese and controls. Skin Na+ content in hypertensive obese (13.33 mmol/L [11.53-14.22] did not differ to normotensive obese (14.12 mmol/L [13.15-15.83]) or controls (11.48 mmol/L [10.48-12.80]), whereas normotensive obese had higher values compared to controls (p = 0.004). Arterial hypertension in obese adolescents is associated with low muscle Na+ content. These findings suggest an early dysregulation of Na+ homeostasis in cardiometabolic disease. Further research is needed to determine whether this association is causal and how it evolves in the transition to adulthood

    LebensMittelPunkte schaffen in Kooperation! Ein Handlungsleitfaden für die Zusammenarbeit von bezirklicher Verwaltung und ernährungspolitischen Initiativen

    Get PDF
    Zugang zu gesunder und nachhaltiger Ernährung ist in Berlin nicht für alle Menschen eine Selbstverständlichkeit. Um Ernährung für alle gewährleisten zu können, braucht es einen Wandel des Ernährungssystems in Berlin, der eine ökologische, klima- und sozialgerechte Nahrungsproduktion und Verteilung für alle Menschen in der Stadt ermöglicht. Einen Beitrag um die Ernährung in der Stadt gerechter und nachhaltiger zu gestalten kann ein sogenannter LebensMittelPunkt (LMP) leisten. LebensMittelPunkte entstehen meist aus ehrenamtlichen Initiativen, können aber auch in Zusammenarbeit mit städtischen Verwaltungen etabliert werden. Eine Zusammenarbeit zwischen zivilgesellschaftlichen Organisationen und Verwaltungen kann dabei Potenziale und Ressourcen freisetzen. Dieser Leitfaden soll ernährungspolitischen Initiativen und Vereinen aus der Zivilgesellschaft sowie kommunalen oder bezirklichen Verwaltungen in Berlin – und darüber hinaus – Empfehlungen geben, wie ein LebensMittelPunkt in einer gemeinsamen Kooperation aufgebaut werden kann

    Model-based exploration of hypokalemia in dairy cows

    Get PDF
    Hypokalemia in dairy cows, which is characterized by too low serum potassium levels, is a severe mineral disorder that can be life threatening. In this paper, we explore different originating conditions of hypokalemia—reduced potassium intake, increased excretion, acid-base disturbances, and increased insulin—by using a dynamic mathematical model for potassium balance in non-lactating and lactating cows. The simulations confirm observations described in literature. They illustrate, for example, that changes in dietary intake or excretion highly effect intracellular potassium levels, whereas extracellular levels vary only slightly. Simulations also show that the higher the potassium content in the diet, the more potassium is excreted with urine. Application of the mathematical model assists in experimental planning and therefore contributes to the 3R strategy: reduction, refinement and replacement of animal experiments

    Model-based exploration of hypokalemia in dairy cows

    Get PDF
    Hypokalemia in dairy cows, which is characterized by too low serum potassium levels, is a severe mineral disorder that can be life threatening. In this paper, we explore different originating conditions of hypokalemia—reduced potassium intake, increased excretion, acid-base disturbances, and increased insulin—by using a dynamic mathematical model for potassium balance in non-lactating and lactating cows. The simulations confirm observations described in literature. They illustrate, for example, that changes in dietary intake or excretion highly effect intracellular potassium levels, whereas extracellular levels vary only slightly. Simulations also show that the higher the potassium content in the diet, the more potassium is excreted with urine. Application of the mathematical model assists in experimental planning and therefore contributes to the 3R strategy: reduction, refinement and replacement of animal experiments.publishedVersio

    Production and temperature sensitivity of long chain alkenones in the cultured haptophyte Pseudoisochrysis paradoxa

    Get PDF
    The alkenone unsaturation index (U<sub>37</sub><sup>K</sup> or U<sub>37</sub><sup>K′</sup>) serves as a critical tool for reconstructing temperature in marine environments. Lacustrine haptophyte algae are genetically distinct from their ubiquitous and well studied marine counterparts, and the unknown species-specific genetic imprints on long chain alkenone production by lacustrine species have hindered the widespread application of the U37<sup>K</sup> temperature proxy to lake sediment records. The haptophyte Pseudoisochrysis paradoxa produces alkenones but its U37<sup>K</sup> calibration has never been determined. It has an alkenone fingerprint abundant in tetraunsaturated alkenones, a hallmark of lacustrine environments. We present here the first calibration of the U37<sup>K</sup> index to temperature for a culture of P. paradoxa. We found that the U37<sup>K</sup> index accurately captured the alkenone response to temperature whereas the U37<sup>K′</sup> index failed to do so, with U37<sup>K′</sup> values below 0.08 projecting to two different temperature values. Our results add a fifth species-specific U37<sup>K</sup> calibration and provide another line of evidence that different haptophyte species require different U37<sup>K</sup> calibrations. The findings also highlight the necessary inclusion of the C<sub>37:4</sub> alkenone when reconstructing temperatures from P. paradoxa-derived alkenone records

    CD1d Expression in Paneth Cells and Rat Exocrine Pancreas Revealed by Novel Monoclonal Antibodies Which Differentially Affect NKT Cell Activation

    Get PDF
    Background: CD1d is a nonpolymorphic MHC class I-like molecule which presents nonpeptide ligands, e.g. glycolipids, to NKT cells. These cells are known to have multiple effects on innate and adaptive immune responses and on the development of pathological conditions. In order to analyze CD1d expression and function in the rat, the first rat CD1dspecific monoclonal antibodies (mAbs) were generated. Methodology/Principal Findings: Two mAbs, WTH-1 and WTH-2, were generated which bound equally well to cell surfaceexpressed rat and mouse CD1d. Their non-overlapping epitopes were mapped to the CD1d heavy chain. Flow cytometry and immunohistological analyses revealed a nearly identical degree and pattern of CD1d expression for hematopoieitic cells of both species. Notable is also the detection of CD1d protein in mouse and rat Paneth cells as well as the extremely high CD1d expression in acinar exocrine cells of the rat pancreas and the expression of CD4 on rat marginal zone B cells. Both mAbs blocked a-galactosylceramide recognition by primary rat and mouse NKT cells. Interestingly, the two mAbs differed in their impact on the activation of various autoreactive T cell hybridomas, including the XV19.2 hybridoma whose activation was enhanced by the WTH-1 mAb. Conclusions/Significance: The two novel monoclonal antibodies described in this study, allowed the analysis of CD1d expression and CD1d-restricted T cell responses in the rat for the first time. Moreover, they provided new insights into mechanisms of CD1d-restricted antigen recognition. While CD1d expression by hematopoietic cells of mice and rats was extremely similar, CD1d protein was detected at not yet described sites of non-lymphatic tissues such as the rat exocrine pancreas and Paneth cells. The latter is of special relevance given the recently reported defects of Paneth cells in CD1d2/2 mice, which resulted in an altered composition of the gut flora

    Internalization and viability studies of suspended nanowire silicon chips in HeLa Cells

    Get PDF
    Micrometer-sized silicon chips have been demonstrated to be cell-internalizable, offering the possibility of introducing in cells even smaller nanoelements for intracellular applications. On the other hand, silicon nanowires on extracellular devices have been widely studied as biosensors or drug delivery systems. Here, we propose the integration of silicon nanowires on cell-internalizable chips in order to combine the functional features of both approaches for advanced intracellular applications. As an initial fundamental study, the cellular uptake in HeLa cells of silicon 3 m 3 m nanowire-based chips with two different morphologies was investigated, and the results were compared with those of non-nanostructured silicon chips. Chip internalization without affecting cell viability was achieved in all cases; however, important cell behavior differences were observed. In particular, the first stage of cell internalization was favored by silicon nanowire interfaces with respect to bulk silicon. In addition, chips were found inside membrane vesicles, and some nanowires seemed to penetrate the cytosol, which opens the door to the development of silicon nanowire chips as future intracellular sensors and drug delivery systems
    corecore